

Current Challenges In Dairy Industry with Coproducts/Waste Streams

- We spend a lot on "waste treatment" at the farm and cheese plant
- Low value coproducts (permeate, acid whey, etc) are often used as animal feed
- Coproducts are often land spread
 - Potential negative environmental impact due to leaching of nitrogen, phosphorus and other materials into the soil, groundwater or atmosphere.
 - More challenging as environmental regulations get stricter.
- Volumes getting larger
- Drying is expensive and shipping them overseas for animal feed, is that environmentally sustainable?

Plastics

- Most plastics used for food packaging are fossil derived
- Only around 1% of plastics are biobased
- Most plastics used in food packaging are nonrecyclable and are not biodegradable
- Plastic waste is a major environmental concern
- Concerns over ingestion of microplastics

cdr.wisc.edu

 By 2030 U.S. plastics industry's contribution to climate change is estimated to become equal to coal-fired power stations

Circular Bioeconomy and Dairy

- Dairy produces a lot of organic feedstocks (e.g., manure, acid whey, cheese whey, permeate, etc)
- These feedstocks contain a simple sugar (compared to lignocellulosic type (forestry products) materials)
- Could be fermented into a wide range of "green" chemicals

 Beyond biodigesters
- We already have lactic acid bacteria that ferment lactose, they can engineered to produce target chemicals
- Renewable source

cdr.wisc.edu

• Great sustainability story for the dairy industry (feed the world, save the planet....)

Could We Use Dairy Co-Products to Make Value-Added Ingredients

U.S. Produces: 120 billions pounds of liquid whey 600,000 tons of dry permeate About 2M metric tons of acid whey

Key Targets for Bio-based chemicals

Range of organic acids

-e.g., medium chain fatty acids, succinic acid, lactic acid

- Precursors for biodegradable bio-plastics, options:
 - -polylactic acid and

cdr.wisc.edu

- -polyhydroxybutyrate, PHB
- Other biobased platform chemicals (used to make other higher value-added products)
 - -e.g., 1,3-propanediol, 1,4-butanediol
 - -About 90% of chemicals currently used are fossil derived
- Food materials/supplements

Contents lists available at ScienceDirect

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Enhanced polyhydroxybutyrate production from acid whey through determination of process and metabolic limiting factors

Liyuan Hou^{a, 1}, Linjing Jia^{b, 1}, Hailee M. Morrison^a, Erica L.-W. Majumder^a, Deepak Kumar^{b,*}

^a Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA

^b Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA

Production of biobased plastics (PHB) from acid whey

Worldwide demand for lactic acid is about 150,000 tons per annum (close to \$3 billion)

 Compound growth rate of >10%

lacksquare

Yield is about 1 gram ulletof lactic acid from 1 gram of lactose

Fig. 2 - A schematic representations of the two manufacturing processes of lactic acid.

J. Rad. Res. Appl.

cdr.wisc

Sci. 7:222

Critical Components to Utilizing Renewable Feedstocks to Make New Bio-based Chemicals

Engineering microbes

Reactor design and conditions

Isolation and purification*

*CDR is investing in scaling up bioreactors and isolation/purification technologies

Scaleup*

TEA (technoeconomic analysis)

https://beta.nsf.gov/funding/initiatives/regional-innovation-engines National Science Foundation Funding & Awards ^ News & Events ~ Overview Fund Your Research ~ NSF-Funded Projects ~ Major Initiatives / **Regional Innovation Engines**

Through a bold, new U.S. National Science Foundation initiative, the Regional Innovation Engines, or NSF Engines, program catalyzes and fosters innovation ecosystems across the U.S. to:

- Advance critical technologies
- Address national and societal challenges
- Foster partnerships across industry, academia, government, nonprofits, civil society, and communities of practice
- Promote and stimulate economic growth and job creation
- Spur regional innovation and talent

Type 1 Grants: \$1M Planning for an Engine Type 2 Grants: \$160M over 10 years

Decarbonize Agricultural Residues by bio-Transformations (DART) submitted by UW-Madison

- Use various agricultural feedstocks to power a bioeconomy
- Renewable agricultural feedstocks would be turned into green chemicals by new biorefineries, and other bioconversion technologies.
- Type 1 proposal

wisc.edu

PI: Lucey, UW-Madison

Partners in the **DART** Program

cdr.wisc.edu

Concluding Remarks

- We can turn our problems into opportunities and valueadded products
- By using biofermentation of our waste streams, we can produce various types of renewable, green chemicals/plastics for the future
- A regional initiative like DART could facilitate this major change in our agricultural sector – becoming more climate smart or towards net-zero

