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GWP*- A new way to
characterize short-lived
greenhouse gases

* GWPI00 overestimates methane’s warming
impact of constant herds by a factor of4, and
overlooks it’s ability to induce cooling when
CH, emissions are reduced.

« GWP* is a new metric out of the University of
Oxford that assesses how an emission of a
short-lived greenhouse gas affects temperature.

* GWP*accounts for methane’s short lifespan,
including its atmospheric removal.
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Stock gases will accumulate
over time, because they stay
in the environment.

Flow gases will stay stagnent,
as they are destroyed at the
same rate of emission.

Based on research by Myles R. Allen, Keith P. Shine, Jan S. Fuglestvedt,
Richard J. Millar, Michelle Cain, David J. Frame & Adrian H. Macey.
Read more here: https://rdcu.be/b1t7S



CO, equivalent emissions  CO, equivalent emissions
Annual Methane Emissions

Using GWP,, Using GWP*

WARMING 1tCHy
4

987 tCO,-e 982 1CO,-we
Rise by 35% =33 1CO,/y for 30y =33 tCO,/y for 30y

30 years

STABLE

Fall by 10% 798 1CO,-e -10 tCO,-we

COOLING

Fall by 35% 693 tCO,-e
-562 tCO,-we
Cain, M., Allen, M. & Lynch, J. Oxford Martin Programme on
Climate Pollutants (2019). Read more at: ) UCDAVIS
https://www.oxfordmartin.ox.ac.uk/downloads/academic/201908 ~ CLEAR Center

ClimatePollutants.pdf.



https://www.oxfordmartin.ox.ac.uk/downloads/academic/201908_ClimatePollutants.pdf
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California dairies
have reduced
greenhouse -
gases by

2 3MMTCO2¢e —
30% of the
sector’s
methane
reduction goal.
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Methane Reductions from Feed Additives

Additives

Seaweed
Fatty acids
3NOP
Oregano
Tannins
Nitrate
Agolin
Monensin
Biochar
Cinnamon
Garlic

Saponins

Created based on the werk of Dr. Ermis Kibeab and Dr. Xlaoya Feng.
University of Califorais. Davis.
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Potential pathways to climate neutrality for California dairy
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Symposium review: Defining a pathway to climate
neutrality for US dairy cattle production*
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ABSTRACT

The US dairy industry has made substantial gains in
reducing the greenhouse gas emission intensity of a gal-
lon of milk. At the same time, consumer and investor
interest for improved environmental benefits or reduced
environmental impact of food production continues to
grow. Following a trend of increasing greenhouse gas
emission commitments for businesses across sectors of
the economy, the US dairy industry has committed to
a goal of net zero greenhouse gas emissions by 2050.
The Paris Climate Accord’s goal is to reduce warming
of the atmosphere to less than 1.5 to 2°C based on pre-
industrial levels, which is different from emission goals
of historic climate agreements that focus on emission
reduction targets. Most of the emissions that account
for the greenhouse gas footprint of a gallon of milk are
from the short-lived climate pollutant CH,, which has
a half-life of approximately 10 yr. The relatively new
accounting system Global Warming Potential Star and
the unit CO, warming equivalents gives the industry
the appropriate metrics to quantify their current and
projected warming impact on future emissions. Incor-
porating this metric into potential future emissions
pathways can allow the industry to understand the
magnitude of emissions reductions needed to no longer
contribute additional warming. Deterministic modeling
was performed across the dairy industry’s emission ar-
eas of enteric fermentation, manure management, feed
production, and other upstream emissions necessary
for dairy production. By reducing farm-level absolute
emissions by 23% based on current levels, there is the
opportunity for the US dairy industry to realize climate
neutrality within the next few decades.
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INTRODUCTION

Human activities that release greenhouse gas (GHG)
emissions have increased the concentrations of GHG,
such as carbon dioxide (CO,), methane (CH,), and
nitrous oxide (N,0), in the troposphere (Myrhe et al.,
2013; Forster et al., 2021). Since preindustrial times, the
concentrations of CO,, CH,, and N,O have increased
approximately 50, 150, and 22%, respectively (US EPA,
2021a). Dairy cattle production, defined as all activities
from upstream inputs into feed production and animal
management, contributes to the atmospheric increase
of GHG emissions and the warming impacts associated
with those increased GHG concentrations. These emis-
sions include feed production N,O emissions from soils,
enteric CH,, CH, and N,O emissions from manure, and
CO, emissions from the combustion of fossil fuels used
in farming equipment.

In the United States, it is estimated that dairy cattle
production is responsible for approximately 99 to 172
million metric tonnes of CQ, equivalents (COse),
which represents approximately 1.9 to 2.5% of annual
US GHG emissions (Thoma et al., 2013; Capper and
Cady, 2020; Rotz et al., 2021; Uddin et al., 2022). The
range in the estimated total GHG emissions from the
US dairy cattle production are reflective of differences
in modeling techniques, time periods assessed, system
boundaries, and differences in the 100-yr global warm-
ing potentials (GWP100) used within the analysis.

The GWP100 of a GHG is a measure of how much
energy the emissions of 1 ton of a gas will absorb over
100 yr, relative to the emissions of 1 ton of CO,, which
is the reference gas (US EPA, 2022). Over time, sub-
stantial changes have been made to the GWP100 values
of CH,, and as this gas is approximately 62% of the US
dairy cattle production’s total GHG emissions (Rotz
et al,, 2021), changes to the estimated warming im-
pacts of CH, can significantly shift the total estimated
contribution of the industry to US or global emissions
inventories.

Recently, work has demonstrated that the GWP100
poorly links emissions to warming effects across a vari-
ety of emissions scenarios. Specifically, GWP100 over-

The US Dairy Sector
can Reach Climate
Neutrality by 2041
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